Department of Mathematics Oriental College (Autonomous), Takyel, Imphal

TEACHING PLAN FOR THE ACADEMIC YEAR 2020 - 2021 (ODD SEM)

B.A. / B.Sc. Mathematics (Honours)

Program Outcomes (POs)

РО	After completion of the B.A. /B.Sc. Mathematics (Honours) 3 Year			
No.	UG Programme under the Choice Based Credits System (CBCS), the			
	graduates will be able to understand			
PO - 1	Numerical, analytical and logical skills.			
PO - 1	Better problem solving skills.			
PO - 1	Real world applications.			
PO - 1	Understand the world better.			
PO - 1	Understand hypothesis, theories and proofs.			

SEMESTER I

CORE COURSE (HC) – I

Name of the Course: Algebra – I & Complex Trigonometry Paper Code: MAT – HC – 1016

No of hours per week	Credits	Total No. of hours	Marks
6	6	90	100
	Theory- 05, Tutorial-01		

Course Objectives: The course is designed

1. to improve students' abstract and logical thinking capabilities applying mathematical ability to handle proofs, to give the applications of the

concept of binary operations and groups, basic properties of groups and subgroups, to explore different types of subgroups, cyclic groups, permutation groups, symmetric groups.

- 2. to give relation between roots and coefficients.
- 3. to give knowledge of complex functions in complex variable.

Course Learning Outcomes(CO)	On successful completion of this Course, the student should be able
CO – 1	to prove some group theoretic statements including groups, cyclic groups, permutation Groups, normal subgroups.
CO – 2	to Prove Lagrange's theorem, Fermat's & Wilson's theorem.
CO - 3	to find solutions of cubic equations by Cardan's method & biquadratic equations by Ferrari's method.
CO - 4	to understand De Moivre's theorem, Gregory's theorem & Hyperbolic functions of complex functions.

Unit	Section	Topics of	Lecture	Learning	Pedagogy	Assessment
		Discussion	hours	outcomes		/evaluation
	Inequal	ities				
I	1.	Geometric mean and Arithmetic mean.	1	To understand the definition, theorems of G.M. & A. M., including Weighted means.	White Board/ Lecture with illustrations /Discussion /PPT.	Unit Test/ Class Test/ Assignment/ Q & A Session/ Group Discussion/
	2.	Geometric mean and Arithmetic mean (Continued).	1	To solve questions on G.M. & A.M., relations between them.		Seminar/ Quiz.
	3.	Cauchy – Schwarz inequalities.	2	To identify some famous inequalities, & solving	White Board/ Lecture	Unit Test/ Class Test/

4.	Holder's and Minkowski's inequalities.	2	related problems of Cauchy Schwarz inequalities. Deduction of Cauchy Schwarz inequalities from Holder's inequalities, methods other than the given inequalities.	with discussion/ PPT. White Board/ Lecture with discussion/ PPT.	Assignment/ Q & A Session/ Group Discussion/ Seminar/ Quiz
Theory	of equations	5			
1.	Polynomial, Descartes rule of signs, Fundamental theorem of Algebra.	2	To recall the fundamental s of algebraic equations, matrices and rules of derivative, integration.		
2.	Relation between roots and Coefficient, Symmetric functions of roots.	2	To understand nature of roots , Symmetric functions of roots.	White Board/ Lecture with discussion/ PPT.	Unit Test/ Class Test/ Assignment/ Q & A Session/ Group
3.	Relation between roots and Coefficient, Symmetric functions of roots (Continued).	1	To identify additional relations between the roots.		Discussion/ Seminar/ Quiz.
4.	Transformati on of equations.	3	Practice the formation of equations whose roots are related to the roots of another equation in		Unit Test/ Class Test/ Assignment/

				some way		Q & A
	5.	Solution of	2	, To solve		Session/
	0.	cubic	-	cubic		Group
		equations by		equations by	White	Discussion/
		Cardan's		Cardan's	Board/	Seminar/
		method.		method	Lecture	Quiz.
	6	Biquadratic	2	To solve the	with	
	0.	equations by	-	biquadratic	discussion/	
		Ferrari's		equations by	PPT.	
		method and		Ferrari's		
		Euler's		method and		
		method.		Euler's		
				method.		
	Matrice	es				
	1.	Some types	1	То		
		of Matrices,		understand		
		Elementary		the basic		
		operations		concepts in		
		on matrices.		matrices.		
	2.	Inverse of a	1	Practice for		
		matrix.		finding		
				inverse of a		
				given matrix.		Unit Test/
	3.	Linear	2	To test the	White	Class Test/
		independenc		linear	Board/	Assignment/
		e of row and		independenc	Lecture	Q & A
11		column		e of given	with	Session/
		matrices.		vectors.	discussion/	Group
	4.	Row rank,	2	Practice for	PPT.	Discussion/
		Column rank		finding Row		Seminar/
		and rank of a		rank, Column		Quiz.
		matrix,		rank and rank		
		Equivalence		of a matrix,		
		of column		Equivalence		
		and row		of column		
		ranks.		and row		
				ranks.		
	5.	Eigen values,	2	To evaluate		
		eigenvectors		Eigen values,		
		and the		eigenvectors		
		characteristic		and the		
		equation of a		characteristic		
		matrix.		equation of a		
				matrix.		

	6.	Cayley Hamilton theorem and its use in finding inverse of a matrix.	2	To understand Cayley Hamilton theorem & to solve problems based on it.	White Board/ Lecture with discussion/ PPT.	Unit Test/ Class Test/ Assignment/ Q & A Session/ Group Discussion/ Seminar/ Quiz.
	Abstrac	t Algebra				
	1.	Mappings	1	To learn different types of mappings.		
111	2.	Equivalence relations and partitions, equivalence classes.	2	To understand equivalence relations and partitions, equivalence classes and solved problems based on them.	White Board/ Lecture with discussion/	Unit Test/ Class Test/ Assignment/ Q & A Session/ Group Discussion/
	3.	Congruence modulo n Group and its elementary properties.	2	To learn congruence modulo n Group and its elementary properties.	PPT.	Seminar/ Quiz.
	4.	Examples of Abelian and Non- Abelian groups.	1	To evaluate problems based on Abelian and non- Abelian groups.		
	5.	Subgroups, Condition for being a subgroup.	1	To identify subgroups, to study conditions for being a subgroup.		

б. 7.	Integral powers of an element, Order of a group and order of an element of a group. Cyclic groups and generators, Alternating groups.	3	To understand Integral powers of an element, Order of a group and order of an element of a group with certain theorems on the order of an element of a group. To understand basic concepts in Cyclic groups and generators, Alternating groups with certain theorems on cyclic groups.	White Board/ Lecture with discussion/ PPT	Unit Test/ Class Test/ Assignment/ Q & A Session/ Group Discussion/ Seminar/ Quiz
8.	Definition and properties of normal sub- group.	1	To understand basic concepts in normal sub- group with evaluation of different characterizati on.		Unit Test/ Class Test/ Assignment/ Q & A Session/ Group Discussion/ Seminar/
9.	Permutation group, product of two permutations ,Even and odd permutation.	2	To understand different types of permutations and theorems, solve problems based on	White Board/ Lecture with discussion/	Quiz.

				permutations	PPT.	
				•		
	10.	Symmetric	2	To evaluate		Unit Test/
		groups S ₁ ,S ₂ ,		Symmetric		Class Test/
		S ₃ ,, S _n IS		groups S ₁ ,S ₂ ,		Assignment/
		abelian for n		S ₃ ,, S _n IS		Q&A
		\leq 2 and non –		abelian for n		Session/
		abelian for n		≤ 2 and non –		Group
		=3.		abelian for n		Discussion/
				=3.		Seminar/
	11.	Lagrange's	3	То		Quiz.
		theorem,		understand		
		Fermat's		Lagrange's	White	
		theorem and		theorem,	Board/	
		Wilson's		Fermat's	Lecture	
		theorem.		theorem and	with	
				Wilson's	discussion/	
				theorem, and	PPT.	
				to solve		
				problems		
				based on		
				them with		
				deductions.		
	Comple	x Trigonome	etry			
	1.	De Moivre's	2	То		
		theorem and		understand		
		its		De Moivre's		
		applications.		theorem &		
				important		
				deductions		
				from the	White	
				theorem.	Board/	
	2.	Expansion of	3	To expand	Lecture	
		trigonometri		sin n θ , cos	with	
		c functions.		$n\theta$, tan $n\theta$,	discussion/	
				$\sin \alpha$, $\cos \alpha$,	PPT.	
				tan α .		
	3.	Exponential	3	To learn		
		values for		Euler's		
		circular		exponential		
		functions.		values and		
		complex		their		
		argument.		properties.		
ł						
	4.	Gregory's	1	To evaluate θ		

				tan $ heta$		
	5.	Gregory's	1	Evaluation of		Unit Test/
		series(contin		the value of		Class Test/
		ued).		π using		Assignment/
		·		Gregory's		Q & A
IV				series.		Session/
	6.	Hyperbolic	2	То		Group
	-	functions		understand		Discussion/
				Hyperbolic		Seminar/
				functions,		Quiz
				Expansions		
				and		
				formulae.	White	
	7.	Summation	2	То	Board/	
		of series		understand	Lecture	
		including		method of	with	
		C+iS method.		difference, to	discussion/	
				evaluate sum	РРТ	
				of		
				sines/cosines		
				of n angles in		
				A.P. and		
				deduction of		
				certain		
				results. to		
				apply C+iS		
				method for		
				finding the		
				sum of given		
				finite, infinite		
				trigonometric		
				series.		
	8	Infinite	1	Resolution of		
	0.	product	-	$\sin \cdot \cos \theta$		
				into factors		
				to evaluate		
				the sums of		
				the various		
				powers of		
				the		
				reciprocals of		
				natural		
				numbers		
NB	he contact	t hours for tut	orial class	es will he 15 h	rs	

Reference Books:

- 1. Das and Mukherjee *Higher Trigonometry,* U.N. Dhur & Sons Pvt. Ltd., Kolkata.
- 2. Chandrika Prasad Algebra and Theory of Equations, Pothisala Pvt.
- 3. I.N. Herstein *Topics in Algebra,* John Wiley & Sons, New Delhi.
- 4. J.G, Chakravorty & P.R. Ghosh : *Advance Higher Algebra,* U.N. Dhur & Sons Pvt. Ltd., Kolkata.
- 5. Joseph A. Gallan: *Contemporary Abstract Algebra,* Narosa.

Course Teachers:

HOD DR. L. Ibeni Devi

- 1. Dr. L. Ibeni Devi (UNIT IV)
- 2. Kh. Bikramjit Singh (UNIT III)
- 3. L. Ragini Devi (UNIT II)
- 4. Dr. Kh. Bulbul Singh (UNIT I)

CORE COURSE (HC) – II Name of the Course: Calculus Paper Code: MAT – HC – 1026

No of hours per week	Credits	Total No. of hours	Marks
6	6 Theory-05 Tutorial-01	90	100

Course Objectives: To focus on general concepts of

- 1. Limit continuity and differentiability.
- 2. successive and partial differentiations and their physical interpretation
- 3. Introduce the idea of double integrals and its applications.

Course Learning	On successful completion of this Course, the student
Outcomes(CO)	should be able to
CO – 1	express the physical problems containing more variables
CO – 2	find volume and surface areas of solid of revolution and ready to solve problems arise in mathematical physics.

Unit	Section	Topics of	Lecture	Learning	Pedagogy	Assessment
		Discussion	hours	outcomes		/evaluation
	Different	iation:				
	1.	Limit and Continuity (using $\varepsilon - \delta$ definition) of the functions	2	The students will have a thorough understandin g of the limit and continuity of different functions		
1	2.	Successive differentiatio n	1	To understand the method of finding successive differentiatio n	White Board (
	3.	Leibniz's theorem and its application	1	To understand Leibniz's theorem, to solve problems based on it	Lecture with illustrations /Discussion /PPT.	Unit Test/ Class Test/ Assignment/ Q & A Session/ Group Discussion/
	4.	Rolle's Theorem, Lagrange's and Cauchy's Mean Value theorems	2	To understand Rolle's Theorem, Lagrange's and Cauchy's Mean Value theorems and to solve problems based on them		Seminar/ Quiz.
	5.	Taylor's and Maclarin's theorem with Lagrange's and Cauchy's	3	To understand Taylor's and Maclarin's theorem with		

	6. 7.	form of remainders. Indeterminat e forms L-Hospital's rule	1	Lagrange's and Cauchy's form of remainders To learn Indeterminat e forms To learn L- Hospital's rule		
	8.	Expansion of standard functions: e^{x} , sin x, cos x, log (1+x), (1+x) ^m , sin ⁻ 1 _x , cos ⁻ 1 _x , tan ⁻¹ x.	4	To learn Expansion of standard functions		
	Partial Diff	erentiation:				
	1.	Limit and Continuity for functions of two and three variables	2	To evaluate Limit and Continuity for functions of two and three variables		
11	2.	Partial differentiatio n, successive partial differentiatio ns	2	Practice to solve Partial differentiatio n, successive partial differentiatio ns of different functions	White Board/ Lecture	Unit Test/ Class Test/ Assignment/ Q & A
	3.	Euler's theorem on Homogenous functions of two and three variables	4	To understand and solve Euler's theorem on Homogenous functions of two and	with illustrations /Discussion /PPT	Session/ Group Discussion/ Seminar/ Quiz.

	1		1			
				three		
	•			Variables		
	4.	Maxima and	2	TO SOIVE		
		Minima of		problems		
		functions of		based on		
		two		Minima and		
		variables.		functions of		
				tunctions of		
	-	Contractoria	-			
	5.	Curvature,	5	understand		
		radius of		the definition		
		curvature for		of contor		
		the		radius of		
		Cartesian,				
		Parametric,		the curve and		
		implicit and		nractice		
		nolar		problems		
		equations		problems		
	6	Asymptotos	2	То		
	0.	Asymptotes	2	understand		
				the method		
				of finding		
				asymptotes		
	7	length of	3	То		
	-	tangent and		understand		
		normal sub		the		
		tongont and		definitions		
		tangent and		Length of		
		sub normal		tangent and		
				normal, sub		
				tangent and		
				sub normal		
	Integratio	n				Unit Test/
	1.	Integration	2	То		Class Test/
		as the limit of		understand		Assignment/
		a sum		the method		Q & A
				of integration		Session/
111				as the limit of		Group
				sum		Discussion/
	2.	Fundamental	2	То		Seminar/
		theorem of		understand		Quiz
		integral		Fundamental		
		calculus		Theorem and		
		50.00100		to practice		
				various		
				related	White	

				problems	Board/	
	3.	Reduction	3	То	Lecture	
		formulae for		understand	with	
		indefinite		reduction	illustrations	
		and definite		formulae and	/Discussion	
		intograle		practice	/PPT	
		integrais		solving		
				indefinite		
				and definite		
				integrals		
	4.	Definition of	1	To acquire		
		improper		the		
		integral		knowledge		
				about		
				improper		
				integral		
	5.	Beta and	4	To learn		
		Gamma		Beta, Gamma		
		functions		functions and		
				its basic		
				properties		
				and other		
				properties		
				with related		
				problems		
	6.	Quadrature	4	To practice		
		and		various		
		Rectification		problems		
				Dased on		
				Quadrature		
				Rectification		
	Double Int	egrals		Rectification		
	1	Working	2	Review of	White	Unit Test/
	1.	knowledge of	2	basic working	Board/	Class Test/
		dauble		properties of	Lecture	Assignment/
IV		internale		double	with	Q&A
		integrais		integrals	illustrations	Session/
	2.	Jacobian	2	То	/Discussion	Group
				understand	/PPT	Discussion/
				the Jacobian		Seminar/
				method for		Quiz
				transformati		
				on		
	3.	change of	3	The students		
		variable in		will exposed		
				to the best		

	double integrals		method	
4.	Application of double integral	4	The students will exposed to different applications of double integrals	
5.	Volume and surface areas of solid of revolution	5	To study volume and surface areas of solid of revolution of some standard conic sections in different co- ordinate systems	

RECOMMEMDED BOOKS

- 1. Das and Mukherjee *Differential Calculus*, U.N. Dhur & Sons, Kolkata.
- 2. Das and Mukherjee *Integral Calculus*, U.N. Dhur & Sons Pvt. Ltd., Kolkata.

REFFERENCES

- 1. Maity and Bagchi *Integral Calculus, An introduction to Analysis,* New CentralBook Agency, Calcutta.
- 2. T.M. Apostol *Calculus, Vulume I and II,* Willey Eastern Ltd., New Delhi.
- 3. Shanti Narayan Integral Calculus, S. Chand & Co.Pvt. Ltd., New Delhi.
- 4. Gorakh Prasad *Integral Calculus,* Pothisala Pvt.Ltd., Allahabad.
- 5. Gorakh Prasad *Differential Calculus,* Pothisala Pvt.Ltd. Allahabad.
- 6. Erwin Kreyszig Advanced Engineering Mathematics, John Wiley & Sons
- 7. N.Piskunov *Differential and Integral Calculus,* Peace Publishers, Moscow.
- 8. Murray R. Spiegel *Theory and Problems of Advanced Calculus* Schaum's Outline Series, Schaum Publishing Co., New York.
- 9. Maity and Gosh *Integral Calculus,* New Central Book Agency, Kolkata.

Course Teachers:

HOD DR. L. Ibeni Devi

1.	Dr. L. Ibeni Devi	(UNIT – IV)
2.	L. Ragini Devi	(UNIT – II)
3.	Dr. Kh. Bulbul Singh	(UNIT – I & III)

Generic Elective Course (GE – I) Name of the Course: Group Theory, Matrices & Trigonometry Paper Code: MAT – HG – 1016

No of hours per week	Credits	Total No. of hours	Marks
6	6 Theory-05, Tutorial-01	90	100

Course Objectives: The course gives

- 1. The definitions of the basic concepts of abstract algebra, analysis of the concept of permutation groups, definition of Isomorphism of groups, properties of ring.
- 2. It will help to find solutions of linear equations.
- 3. It gives knowledge of complex functions in complex variables.

Course Learning	The student should be able to
Outcomes(CO)	
CO – 1	apply Lagrange's theorem, Fermat's & Wilson's theorem
	to some exercise
CO – 2	explore the groups of permutations and the alternating groups
CO - 3	prove Cayley's theorem & its generalization

Unit	Section	Topics of Discussion	Lecture hours	Learning outcomes	Pedagogy	Assessment /evaluation
	Group Tł	neory				
				То		

		_				
		Groupoid,		understand	•	
	1.	Monoid,	5	definitions		
		Semi group,		and		
1		Abelian		elementary		
•		group and		properties of		
		their		Groupoid,		
		elementary		Monoid,		
		properties;		Semi group,	White	
				Abelian	Board/	
				group	Lecture	
	2.	permutation		To study	with	Unit Test/
		group	3	definition	illustrations	Class Test/
			•	and	/Discussion	Assignment/
				theorems on	/PPT	Q & A
				permutation		Session/
				and		Group
				calculation		Discussion/
				by taking		Seminar/
				physical		Quiz
				examples		
		Even and		То		
		Odd	2	understand		
	-	permutation	3	Even and		
	3.	P		Odd		
				permutation		
				by study		
				examples		
	4.	Alternating	3	То	•	
		group	•	understand		
		0		alternating		
				group and		
				solve		
				problems		
				based on it		
	5.	Subgroup,	3	То		
		conditions		understand		
		for being a		Subgroup,		
		subgroup		conditions		
		(finite cases)		for being a		
				subgroup		
				(finite cases		
	6.	Examples of	3	To practice		
		Abelian and		various		
		Nonabelian		problems		
				related to		
		groups.		abelian and		
				nonabelian		

				groups		
	Group Th	a any (Continu	rod)	groups		
	Group II	leory (Contint	leu)			
11	1.	Lgrange's theorem, Fernat's and Wilson's theorem.	3	To understand Lgrange's theorem, Fernat's and Wilson's theorem, to solve problems based on these	White Board/ Lecture with illustrations /Discussion /PPT	Unit Test/
	2.	Theorem: If H and K are subgroups, then HK is a subgroup if HK = KH.	3	theorems To study theorems and problems on sub group		Class Test/ Assignment/ Q & A Session/ Group Discussion/ Seminar/
	3.	Union and Intersection of subgroups	2	To practice problems on union and intersection of sub groups		Quiz
	4.	Order of finite group, index of a group.	2	Finding order and index of group		
	5.	Cyclic group and its examples	2	To understand cyclic group by solving examples		
	6.	Isomorphism of groups	2	To study the conditions of isomorphism of groups		
	7.	Elementary properties of a ring.	1	To understand a ring with properties		

	8.	sub rings,	2	To identify		
		Integral of		sub rings		
		domains				
	9.	Division ring	3	То		
				understand		
				Division ring		
				(Definition		
				and		
				examples		
	Matrix:			•		
	1.	Definition,	2	To study	White	
		Operations		basic	Board/	
		on Matrices,		concepts in	Lecture	
		Matrix		Matrices	with	
		Algebra			illustrations	
	2.	Types of	2	To identify	/Discussion	
		Matrices	-	different	/PPT	
				types of		Unit Test/
				Matrices by		, Class Test/
				taking		, Assignment/
				examples		0 & A
111	3	Transpose	1	To practice		Session/
	5.	nanopose	-	formation of		Group
				Transpose of		Discussion/
				a given		Seminar/
				Matrix		Quiz
	4	Adioint and	2	To find		
		Inverse of a	-	adioint and		
		matrix		inverse of		
				different		
				Matrices		
	5	Rank of a	2	Determinatio		
	5.	matrix	5	n of rank by		
				reducing it to		
				triangular		
				matrix.		
				different		
				approaches		
				for		
				introduction		
				of notion of		
				rank		
	6	Solutions of	2	To calculate	•	
	0.	System of	2	different		
		linear		systems of		
		equations		linear		
		cquations		equations		
				equations	1	

	Trigonor	netry:				
	1.	De Moivre's theorem for a rational index	1	To understand De Moivre's theorem with some deductions	White Board/	
IV	2.	Expansion of sin x, cos x, in power of x	2	To practice deductions and expansion of circular functions in terms of x	Lecture with illustrations /Discussion /PPT	
	3.	exponential values for circular functions	1	To practice various problems related to exponential values for circular functions		Unit Test/ Class Test/ Assignment/ Q & A Session/ Group Discussion/
	4.	Complex argument	1	To study definition and examples		Seminar/ Quiz
	5.	Gregory's series	1	To understand Gregory's series and evaluation of different Gregory's series		
	6.	Hyperbolic functions	2	To acquire the knowledge of hyperbolic function, and solve problems based on hyperbolic functions		

7.	summation of series including C + iS method.	2	To know C+iS method and to apply C+iS method to find sum of different trigonometric	
			series	

RECOMENDED BOOKS

- 1. Das and Mukherjee Higher Trigonometry, U.N. Dhur & Sons Pvt. Ltd, Cal.-73.
- 2. Chandrika Prasad Algebra and Theory of Equations, Pothisala Pvt.Ltd, 2Lajpat Road.
- 3. Surjeet Singh and Quazi Zameerudin Modern Algebra, V. Kas

Course Teachers:

- 1. Dr. L. Ibeni Devi (UNIT IV)
- 2. Kh.Bikramjit Singh (UNIT I and II)
- 3. L. Ragini Devi (UNIT III)

HOD Dr. L. Ibeni Devi

SEMESTER III

HONOURS CORE COURSE (HC) Name of the Course: Mechanics I (Dynamics and Statics) Paper Code: MAT – HC – 3016

No of hours per week	Credits	Total No. of hours	Marks
6	6 Theory- 05, Tutorial-01	90	100

Course Objectives:

This course aims to provide knowledge how a physical system might develop or alter over time and study the causes of those changes.

Course Learning	On successful completion of this Course, the student
Outcomes(CO)	should be able
CO – 1	to analyse the problems involving tension in a string
CO – 2	to illustrate laws of motion, kinematics of motion and their interrelationship
CO - 3	to explain the concepts of motion of particles

Unit	Section	Topics of	Lecture	Learning	Pedagogy	Assessment
		Discussion	hours	outcomes		/evaluation
	Dynamic	S				
		Components		To study		
		of velocities	2	components		
	1.	and	_	of velocities		
		accelerations		and		
				accelerations		
				of moving		
				particles		
				along OX and		
				OY (analytical		

				treatment)		
	2.	Radial and		To define		
		Transverse		Radial and		
		Velocities	1	Transverse		
			-	Velocities		
					White	
					Board/	
I					Lecture	l Init Test/
	3.	Radial and	2	To define	with	Class Tost/
	-	Transverse		Radial and	illustrations	Class Test/
		Accelerations		Transverse		
				Accelerations		Q & A Cassian /
				under	/ / / / / / / / / / / / / / / / / / / /	Session/
				different		Group
				conditions		Discussion/
				contantions		Seminar/
	Λ	Tangential	2	To discuss		Quiz.
	4.	and normal	2	Tangontial		
		volocitios and		and normal		
				anu normai		
		accelerations				
				accelerations		
				Under		
				different		
				conditions		
	5.	Simple	1	То		
		Harmonic		understand		
		motions		formal		
				definition of		
				S.H.M.		
				through		
				analytical		
				treatment		
	6.	Simple	2	To discuss		
		Harmonic		S.H.M. in		
		motions(cont		case of		
		inued)		Simple		
				Pendulum,		
	7.	Simple	1	To discuss		
		Harmonic		oscillation in		
		motions(cont		case of		
		inued)		elastic string		
				or spiral		
				spring		
	Dynamics	of a particle:				
	1.	Motion on	3	To study	White	

		smooth and		motion on	Board/	
		rough plane		smooth and	Lecture	
		curves		rough plane	with	
				curves under	illustrations	
				gravity by	/Discussion	
				taking	/PPT.	
1				related		
(con				examples		
tinu	2	Motion in	3	To study		Unit Test/
		resisting	J	motion in		, Class Test/
ea)		medium		resisting		, Assignment/
		including		medium		Q&A
		projectile		including		Session/
		1		projectile.		Group
				related		Discussion/
				examples		Seminar/
	3	Motion of	Δ	To study		Quiz.
	5.	varving mass	-	motion of		
				varving mass		
				under		
				different		
				conditions		
	Λ	Central orbit	2	To identify		
			2	central orbit		
				and solved		
				nrohlems		
				based on it		
	5	Kepler's Law	2	Statement		
	5.		5	and		
				explanation		
				of Kepler's		
				Law. related		
				examples		
	6	Acceleration	5	To study		
	0.	in different		acceleration		
		Coordinates		in different		
		system		Coordinates		
		,		system		
	Statics	1	I		1	<u>'</u>
11	1.	Resultant of	2	Practice for		
		two parallel		finding		
		forces		resultant of		
				two parallel		
				forces from		
				related		
				problems		

	2	Unliko	2	Practico for		
	Ζ.	parallal	2	colving		
		parallel		SOIVINg		
		torces		Unlike	white	
				parallel	Board/	
-				forces	Lecture	
	3.	Moment of a	2	Basic	with	
		force		concepts for	illustrations	
				moment of a	/Discussion	
				force with	/PPT	
				examples		
	4.	Couples,	2	To identify		
	••	moment of	_	couples of		
		couple		moment and		
				nractice		
				various		
				ovamplas		
-		Theorem on	2	To practico	-	
	5.	memore of	2	TO practice		
		forment of				
		torces		theorems on		
				moment of		
				forces	-	
	6.	Resultant of	2	Finding		
		a couple and		resultant of a		
		a force		couple and a		
				force with		
				examples		Unit lest/
	7.	Equilibrium	2	To discuss		Class Test/
		of three		the		Assignment/
		coplanar		conditions of		Q&A
		forces		equilibrium		Session/
				of three		Group
				coplanar		Discussion/
				forces		Seminar/
-	8	Any system	2	To practice	-	Quiz.
	0.	of conlanar	2	various		
		forces		evamples of		
		101003		any system		
				of conlanar		
				forcos		
-		Contonom		Contonomy	-	
	9.	Centenary:	2	Centenary:		
		reely		reely		
		suspended		suspended		
		thin,		thin,		
		perfectly		perfectly		
		flexible string		flexible string		
		lines		lines		
	10.	Geometrical	2	То		

				1
	properties of		understand	
	common		different	
	Catenary		geometrical	
			properties of	
			common	
			Catenary	
11.	Tension of	2	To identify	
	the Catenary		and study of	
			Tension of	
			the Catenary	
12.	Parameter of	2	Finding the	
	a Catenary		parameter of	
	for a uniform		a Catenary	
	string			
			string	
	F		T	
13.	Forces In 3-	2	To study	
	aimension ,		Dasic	
	Conditions of		concepts of	
	equilibrium		Forces in 3-	
			dimension ,	
			Conditions of	
1.4	Doint cot's	1		
14.	control avis	T	10 understand	
			basis	
			concents of	
			Point sot's	
			contral axis	
15	Null points	2		
±	ivun points,	5		
	lines and		and practice	
	planes		related topics	
	Stable,		on Null	
	Unstable and		points, lines	
	Neutral		and planes	
	equilibrium		Stable,	
			Unstable and	
			Noutral	
			equilibrium	

RECOMMENDED BOOKS

- 1. **S.L. LONEY:** An elementary treatise on dynamics of particle and of rigid bodies. Cambridge University press 1956, reprinted by S. Chand & Company (P) Ltd. 1988.
- 2. **DAS & MUKHERJEE**: Dynamics published by S. Chand & company (P) Ltd, 2010 ISBN-81-85624-96-8.
- 3. **DAS & MUKHERJEE:** Statics published by S. Chand & company (P) Ltd. 2010, ISBN-81-85624-18-6.
- 4. **S.L. LONEY:** An Elementary treatise on Statics published by A.I.T.B.S., New Delhi, 2004 ISBN-81-7473-123-7.
- 5. A.S. RAMSEY: Statics, CBS Publishers and Distribution, Shahdara, New Delhi-110032, India.

Course Teachers:

HOD DR. L. Ibeni Devi

Dr. L. Ibeni Devi (UNIT – I)
 Kh. Bikramjit Singh (UNIT – II)

HONOURS CORE COURSE (HC) Name of the Course: Real Analysis - I Paper Code: MAT – HC – 3026

No of hours per week	Credits	Total No. of hours	Marks
6	6	90	100
	Theory- 05, Tutorial-01		

Course Objectives: The course will develop a deep and rigorous understanding of real line R and of defining terms to prove results about convergence and divergence of sequences and series of real numbers.

Course Learning	On successful completion of this Course, the student
Outcomes(CO)	should be able
CO – 1	Will understand many properties of the real line
CO – 2	to recognize bounded convergent, divergent, Cauchy and
	monotonic sequences

CO - 3	to apply	the	ratio,	root,	alternating	series	and	limit	
	compariso	on	test	for	convergence	and	abs	olute	
	convergence of an infinite series of real numbers								

			- /		_ .	_
Unit	Section	Topics of	Lecture	Learning	Pedagogy	Assessment
		Discussion	hours	outcomes		/evaluation
	Fundam	ental Properti	ies of Rea	I Numbers and	d Elements o	of Point Set
	Topology	1				
		Interval and		To study		
		its different		definitions		
	1	kinds,	2	and concepts	White	
	1.	Bounded and	3	with related	Board/	
		unbounded		topics on	Lecture	
I		sets,		interval and	with	
		Supremum		its different	illustrations	
		and infimum		kinds,	/Discussion	
				Bounded and	/PPT.	
				unbounded		
				sets,		
				Supremum		
				and infimum		
	2.	Field	3	То		
		axioms,		understand		
		Order		Field		
		axioms,		axioms,		
		Order		Order		
		completenes		axioms,		
		s in R		Order		
				completenes		
				s in R		
	3.	Archimedean	2	Proving some		
		property		results on		
				Archimedean		Unit Test/
				property		Class Test/
	4.	Neighbourho	3	To learn with		Assignment/
		od of a point,		related		Q&A
		Interior		illustrations		Session/
		points, Open		/theorems on		Group
		sets and		neighbourho		Discussion/
		related		od of a point,		Seminar/
		properties/th		Interior		Quiz.
		eorems		points, Open		

		sequence, Limit points of a sequence		concepts and related topics on Concept of sequence, Bounds of	board/ Lecture with illustrations /Discussion /PPT	
11	1.	Concept of sequence,	3	To understand	White	
	Sequence	e of Real Num	bers			
				theorem and its applications		
		theorem		and study of Hein-Borel		
	8.	Concept of compactness; Heine-Borel	2	concepts of compactness		
	Q	Closure of a set, Closed sets	3	properties and theorems on Adherent point and Closure of a set, Closed sets To learn basic		
	7.	Adherent point and	3	To study related		
				Weierstrass Theorem and solve problems based on it		
	6.	Bolzano- Weierstrass Theorem	2	To understand Bolzano-		
				sets and practice problem based on them		
	5.	Limits points and derived set	2	To identify Limits points and derived		
				sets and related properties		
				sets and		

			sequence, Limit points of a sequence	Unit Test/ Class Test/ Assignment/
2.	Bolzano Weierstrass theorem for sequence	3	To learn Bolzano Weierstrass theorem for sequence and solve problems on it	Q & A Session/ Group Discussion/ Seminar/ Quiz.
3.	Limit inferior and superior	2	To learn Limit inferior and superior with illustrations	
4.	Convergent and their properties, divergent and oscillate sequences	3	To study properties of convergent sequence as well as divergent sequences, to identify oscillate sequences	
5.	Cauchy sequences, Cauchy's general principle of convergence	3	To understand Properties and theorems on Cauchy sequences with Cauchy's general principle of convergence	
6.	Algebra of sequences, monotonic sequence and their properties	3	To understand and study the algebra of sequences, monotonic sequence and their properties	

7	Subsequence	3	To solve		
7.	s Nested	5	nrohlems		
	interval		related on		
	theorem		subsequence		
	theorem.		s Nostod		
			s, nesteu		
			theorem		
	<u> </u>		theorem		
Infinite S	eries:	[1	[
1.	Series of real	1	Introduction		
	numbers		to basic		
			concepts on		
			series of real		
			numbers		
2.	Sequence of	1	Introduction		
	partial sums		on sequence		
			of partial		
			sums with		
			problems		
3.	Convergence	2	То		
_	of infinite		understand		
	series,		basic		
	Necessary		concepts and		
	condition for		necessarv		
	the		, conditions on		Unit Test/
	convergence		convergence		Class Test/
	of an infinite		of an infinite		Assignment/
	series		series to		Q&A
	50105		solve related		Session/
			nrohlems		Group
Λ	Cauchy's	1	To identify		Discussion/
4.	general	T	Cauchy's		Seminar/
	principlo for		gonoral		Ouiz.
			principlo for		
	convergence				
-	Coomotrio	4			
5.	Geometric	1			
	series		geometric		
		•	series		
6.	usetui	2	To evaluate		
	theorems on		some userui		
	series of		theorems on		
	positive		series of	\A/bita	
	terms		positive	white Deered (
			terms	Board/	
7.	Comparison	2	To practice	Lecture	
	test of		Comparison		
	convergence		test of	illustrations	
			convergence	/Discussion	

	8	convergence	2	To evaluate	/PPT	
	0.	and	-	convergence	,	
		divergence of		and		
		n-series		divergence of		
		p series				
	•	Couchy's root	2	p-series		
	9.		3			
		test,		Cauchy's root		
		D'Alembert's		test,		
		ratio test,		D'Alembert's		
		Raabe's test		ratio test,		
				Raabe's test		
	10.	Logarithmic	2	To practice		
		test,		Logarithmic		
		D'Morgan &		test,		
		Bertrand test		D'Morgan &		
				Bertrand test		
	11.	Leibnitz's test	2	To practice		
		for		Leibnitz's test		
		alternating		for		
		series		alternating		
				series		
	12.	Conditional	2	То		
		and Absolute		understand		
		convergence		and		
		Ū		evaluation on		
				conditional		
				and absolute		
				convergence		
N/				-		
IV	Limits an	la Continuity:				
	1	Limit and	2	To evaluate	White	
	1.	Continuity	L	limit and	Board/	
		(using $\varepsilon - \delta$		continuity of	Lecture	
		definition) of		functions	with	
		a function		using $c = \delta$	illustrations	
		arunction		definition	/Discussion	
	2	Algebra of	1	То		
	Ζ.	limits and	T	undorstand	/	
		continuous		basis		
		functions		Dasic		
		Tunctions				Unit Test/
				Algebra of		Class Test/
				limits and		Assignment/
				continuous		Q & A
				tunctions		Session/
	3.	Sequential	2	To evaluate		Group
		criterion for		problems		

	limits and		related to	Discussion/
	continuity		Sequential	Seminar/
			criterion for	Quiz.
			limits and	
			continuity	
4.	Types of	1	To identify	
	discontinuitie		types of	
	S		discontinuity	
			by taking	
			examples	
5.	Properties of	3	To study	
	continous		Properties of	
	functions on		continuous	
	a closed		functions on	
	interval		a closed	
			interval and	
			practice	
			related	
			problems	
6.	Uniform	1	Defining	
	continuity		Uniform	
			continuity by	
			illustrations	

RECOMMENDED BOOKS

1. **S.C. Malik and Savita Arora** - Mathematical Analysis, New Age International (P) Limited; Publishers, New Delhi.

2. **K.C. Maity & R.K. Ghosh** - An Introduction to Analysis, Differential Calculus Part I & II, Integral Calculus, Books and Allied (P) Ltd., Kolkata 700009.

3. Shanti Narayan and P.K. Mittal - A Course of Mathematical Analysis, S. Chand & Company Ltd. Ram Nagar, New Delhi - 110055.

Course Teacher: Dr. Kh. Bulbul Singh

HOD Dr. L.Ibeni Devi

HONOURS CORE COURSE (HC) Name of the Course: Laplace Transform & Vector Analysis Paper Code: MAT – HC – 3036

No of hours per week	Credits	Total No. of hours	Marks
6	6 Theory- 05, Tutorial-01	90	100

Course Objectives: This course aims to introduce students to the following concepts and cognitive skills. In this course the students

Understand Laplace Transformation, their properties and applications
 Understand the concepts of Differential and Integration of vectors.

Course Learning Outcomes(CO)	After studying this course the students will be able to
CO – 1	1. State and prove Heaviside's shifting theorem
CO – 2	2. Apply Laplace Transformation in solving PDE
CO - 3	 Solve the related problems of Gauss's, Green's and Stoke's theorems

Unit	Section	Topics of Discussion	Lecture hours	Learning outcomes	Pedagogy	Assessment /evaluation
	Laplace	Fransformatio	n :			
	1.	Laplace Transform	2	Acquire basic Concept & definition of Laplace Transform with examples		

Ι	2. 3. 4.	Kernel of the Integral transformati on Existence of Laplace Transformati on Transformati on of some elementary	2 3 5	To identify Kernel of the Integral transformati on , solve related problems To study Existence of Laplace Transformati on, solve related problems To understand the	White Board/ Lecture with illustrations /Discussion /PPT.	Unit Test/ Class Test/ Assignment/ Q & A Session/ Group Discussion/
		functions		Transformati on of some elementary functions such as f (t) = e^{-at} , Cos at, Sin at, Cosh at, Sinh at, t ⁿ etc.		Seminar/ Quiz.
	Laplace 1	Fransformatio	n(continu	ed):		
11	1.	Properties of Laplace Transformati on	1	To study properties of Laplace Transformati on by taking related examples		Class Test/ Assignment/
	2.	First Translation / Shifting Theorem.	2	Discussion of problems and applications of First Translation / Shifting Theorem	White Board/ Lecture with illustrations /Discussion /PPT.	Q & A Session/ Group Discussion/ Seminar/ Quiz
	3.	Second Translation /Heaviside's shifting Theorem	2	Second Translation /Heaviside's shifting Theorem		

	Laplace 1	Fransformatio	n(continu	ed):		
	1.	Differentiatio	5	To study and	White	Class Test/
		n property		solve the	Board/	Assignment/
				change of	Lecture	Q & A
				scale	with	Session/
				property with	illustrations	Group
				examples	/Discussion	Discussion/
	2.	Laplace	5	Practice to	/PPT.	Seminar/
		Transformati		solve Laplace		Quiz
		on of		Transformati		
		Derivatives of		on of		
		order n		Derivatives of		
				order n with		
				problems		
	Laplace 1	Transformatio	n(continu	ed):		
	1.	Inverse	1	Learn basic		Class Test/
		Laplace		concepts of		Assignment/
		transformati		Inverse		Q & A
		ons		Laplace		Session/
				transformati		Group
				ons, related		Discussion/
				problems		Seminar/
	2.	Theorems on	2	To learn	White	Quiz
IV		multiplicatio		Theorems on	Board/	
		n by s and		multiplicatio	Lecture	
		1/s.		n by s and	with	
				1/s by taking	illustrations	
				related	/Discussion	
				examples	/PPT.	
	3.	First and	2	To study		
		Second		First and		
		Shifting		Second		
		properties		Shifting		
				properties by		
				taking		
				related topics		
	4.	Convolution	3	Statement of		
		Theorem		Convolution		
				Theorem		
				with		
				examples		
	5.	Properties of	2	To study by		
		Convolution		taking		
				examples the		
				Properties of		

				Convolution		
	6.	Application		To learn and		
		of Laplace	5	apply the		
		Transformati	J	technique of		
		on in solving		Laplace		
		PDF		Transformati		
				on in solving		
				PDF		
	Vector A	nalvsis				
V	1	Scalar and	Л	Evaluation		Class Test/
v	т.		4	techniques		Assignment/
		product of		for Scalar and		
		three and				Q Q A Sossion/
		four voctors		product of		Group
		Iour vectors		three and		Discussion/
				four voctors		Discussion/
				with related	White	Seminar/
				with related	Board/	Quiz
				examples	Lecture	
	2.	Reciprocal	1	Concept and	with	
		vectors		Identification	illustrations	
				of Reciprocal	/Discussion	
				vectors	/PPT.	
	3.	Differentiatio	3	Familiar with		
		n of vectors		differentiabili		
				ty of vector		
				functions and		
				related topics		
	4.	Gradient,	3	Concepts of		
		Divergence		Gradient,		
		and Curl of a		Divergence		
		vector		and Curl of a		
				vector with		
				examples		
	5.	Ordinary	2	Definition		
		integrals		and		
				examples		
	6.	Line, Surface	4	To learn		
		and Volume		evaluation		
		integrals		techniques		
				and use of		
				Line, Surface		
				and Volume		
				integrals		
	7.	Theorems of	5	То		
		Gauss,		understand		
		Green,		Gauss, Green		
		Stokes		and Stock's		

		theorems with	
		examples	
		and their	
		applications	

RECOMMENDED BOOKS

- 1. **B. Das-**Analytical Geometry with Vector Analysis, Orient Book Company, Kolkata.
- 2. M.R. Spiegel-Vector analysis and an introduction to tensor analysis-Schaum series.
- 3. Vector Analysis by Maity & Ghosh.
- 4. **Spiegel**: *Laplace Transform*, Schuam Outlines Series.

Course Teachers:

- 1. Kh. Bikramjit Singh (Unit V)
- 2. L. Ragini Devi (Unit I, II, III, IV)

HOD Dr. L. Ibeni Devi

Generic Elective Course (GE – 3) Name of the Course: Ordinary Differential Equations, Partial Differential Equations & Vectors Paper Code: MAT – HG – 3016

No of hours per week	Credits	Total No. of hours	Marks
6	6 Theory-05, Tutorial-01	90	100

Course Objectives: The course aims to provide knowledge about existing world of Differential equations, Mathematical Modelling and their applications.

Course Learning	The student should be able to
Outcomes(CO)	solve different mathematical problems with variation of
	parameters.

Unit	Section	Topics of	Lecture	Learning	Pedagogy	Assessment			
		Discussion	hours	outcomes		/evaluation			
	Ordinary differential equations:								
ł	1.	Exact equations	2	To study Definition , necessary and sufficient Condition of exactness of a 1 st order and 1 st degree ODE with examples	White Board/ Lecture with illustrations /Discussion /PPT				
					White				

2.	Exact equations (continued)	2	Rules of finding integrating factors, by taking different examples for each rule	Board/ Lecture with illustrations /Discussion /PPT	
3.	Exact equations (continued	3	Finding solution of linear and Bernoulli's equation with related problems		Unit Test/ Class Test/ Assignment/ Q & A Session/
4.	Exact equations (continued	3	To practice various reducible equations to linear and Bernoulli's equation		Group Discussion/ Seminar/ Quiz
5.	Equations of first order and higher degree	5	To solve equations of nonlinear first order, higher degree, solvable for p, solvable for y, solvable for x		
6.	Clairaut's equation	5	To study general and singular solution of Clairaut's equation with geometric meaning, related problems		

	7.	Clairaut's equation(cont inued)	2	To identify equations reducible to		
				Clairaut's		
	Partial Dif	ferential Equation	ons:	Ionn		
II	1.	Partial Differential Equations	3	To understand basic concepts and definition with related problems	White Board/ Lecture with illustrations /Discussion /PPT	
	2.	First order equations	4	To acquire the knowledge of classification, construction with geometrical interpretatio n, illustrations by examples		Unit Test/ Class Test/ Assignment/ Q & A Session/ Group Discussion/ Seminar/
	3.	Quasi Linear equations	4	To find the method of characteristic for obtaining general solution of Quasi Linear equations		Quiz
	4.	Canonical forms of First –b order Linear Equations	3	To identify the Canonical forms of First –b order Linear Equations		
	5.	Method of Separation of Variables for solving first	6	To study techniques of solution with proper		

		order partial		examples	
		differential		•	
		equations.			
	Vector	<u> </u>			
	1.	Scalar and	4	Evaluation	
		vector		techniques	
		product of		for Scalar and	
		three and		vector	
111		four vectors		product of	
				three and	
				four vectors	
				with related	
				examples	
	2.	Reciprocal	1	Concept and	
		vectors		identification	
				of Reciprocal	
				vectors	
	3.	Differentiatio	3	Familiar with	
	_	n of vectors		differentiabili	
				ty of vector	
				functions and	
				related topics	
	4.	Gradient,	3	Concepts of	
		Divergence		Gradient,	
		and Curl of a		Divergence	
		vector		and Curl of a	
				vector with	
				examples	
	5.	Ordinary	2	Definition	
		integrals		and	
				examples	
	6.	Line, Surface	4	To learn	
		and Volume		evaluation	
		integrals		techniques	
				and use of	
				Line, Surface	
				and Volume	
				Integrals	
	7.	Theorems of	5		
		Gauss,		understand	
		Green,		Gauss, Green	
		Stokes		and Stock's	
				theorems	
				with .	
				examples	

			and their applications		
N.B: The contact	hours for tut	orial class	es will be 15 h	rs.	

Course Teachers:

- 3. Kh. Bikramjit Singh (Unit III)
- 4. L. Ragini Devi (Unit I,II)

HOD

Dr. L. Ibeni Devi

SKILL ENHANCEMENT COURSE (SEC – I) Name of the Course: Computer Science & Programming I (in C) Paper Code: MAT – SE – 3024

No of hours per week	Credits	Total No. of hours	Marks
6	4 Theory- 02, Practical-02	60	100

Course Objectives: The objective of the course is to generate qualified manpower in the area of Information Technology which will enable such person to work at any offices or for future entrepreneur in the field of IT.

Course Learning Outcomes(CO)	On successful completion of this Course, the student should be able
CO – 1	to find importance of software for lab Experimentation, in research by simulation work,
CO – 2	To develop basic mathematical problems in any software

Total contact hours: 60 (Including lectures, assignments, projects, group discussions, seminars, tests, quiz, Practicals for computer programmes)

Unit	Section	Topics of	Lecture	Learning	Pedagogy	Assessment
		Discussion	hours	outcomes		/evaluation
	Compute	er	ł			
I	1.	Basics of computer	1	To acquire knowledge of Historical evolution with computer generations		Unit Test/ Class Test/ Assignment/ Q & A Session/ Group Discussion/
	2	A standard model of Computer	1		White Board/ Lecture with	Seminar/ Quiz
	3.	Functional description	1		illustrations	
	4.	Types of computer	1		tion/Discuss	
	5.	Operating system	1		/PPT/ Practical	
	6.	Hardware and software	1		Flactical	
	Positiona	al number syst	tems			
11	1.	Integers and real numbers, effect of finite representatio ns				
	2.	Underflow and overflow conditions				
	3.	Associativity and normalisatio n				
	4.	Number systems				
	5.	Conversion of a number from one system to another				

	6.	Binary			
		arithmetic			
	7.	Storing of		BII, BYIE,	
		data in a		NIBBLE,	
		computer		WORD,	
				coding of	
				data- ASCII,	
				EBCDIC, etc.	
111	Algorith	m and flow cha	arts:		
	1.	Algorithm			
	2.	Complexities			
		of algorithm			
	3.	Flow-charts			
	Program	ming Language	es:		
	1.	Machine			
		language,			
		Assembly			
		language,			
		High level			
		language			
	2.	Compiler and			
		Interpreter			
	3.	Object and			
		source			
		program			
	ANSIC				
	1.	DaTa type			
	2.	Expressions			
	3.	Statement s			
	4.	Standard			
		input/output			
	5.	Use of loop			
	6.	Array			
	7.	User defined			
		functions			